Exercise 67

Let $\boldsymbol{\ell}$ be the tangent line to the parabola $y=x^{2}$ at the point $(1,1)$. The angle of inclination of $\boldsymbol{\ell}$ is the angle ϕ that $\boldsymbol{\ell}$ makes with the positive direction of the x-axis. Calculate ϕ correct to the nearest degree.

Solution

Determine the slope of the tangent line to the parabola at $x=1$.

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(1+2 h+h^{2}\right)-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2+h) \\
& =2 \\
& =\frac{2}{1}
\end{aligned}
$$

Slope is rise over run, so this determines two sides of a right triangle.

Tangent relates the angle with these two sides.

$$
\tan \phi=\frac{2}{1}=2 \quad \rightarrow \quad \phi=\tan ^{-1}(2) \approx 63^{\circ}
$$

